img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vcv решил задачу "REBUSЫ - 2" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 35
всего попыток: 46
Задача опубликована: 26.02.16 08:00
Прислал: admin img
Вес: 2
сложность: 1 img
класс: 8-10 img
баллы: 100

Куб со стороной равной 2016 см разбит перегородками на кубики со сторонами 1 см. Какое минимальное число перегородок между единичными кубиками нужно удалить, чтобы из каждого кубика можно было добраться до границы куба?

+ 4
  
Задачу решили: 40
всего попыток: 91
Задача опубликована: 29.02.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: zhekas (Евгений Сыромолотов)

Загадано число от 1 до 144. Разрешается выделить одно подмножество множества чисел от 1 до 144 и спросить, принадлежит ли ему загаданное число. За ответ "да" надо заплатить 2 рубля, за ответ "нет" — 1 рубль. Какая наименьшая сумма денег необходима для того, чтобы наверняка угадать число?

Задачу решили: 57
всего попыток: 64
Задача опубликована: 02.03.16 08:00
Прислал: admin img
Вес: 3
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: petrakomplekt (Жирайр Казарян)

На столе лежали две колоды, по 36 карт в каждой. Первую колоду перетасовали и положили на вторую. Затем для каждой карты первой колоды посчитали количество карт между ней и такой же картой второй колоды (т. е. сколько карт между семерками червей, между дамами пик, и т. д.). Чему равна сумма 36 полученных чисел?

Задачу решили: 28
всего попыток: 51
Задача опубликована: 04.03.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 100

Даны два правильных тетраэдра с ребрами длины 21/2, переводящихся один в другой при центральной симметрии. Пусть F — множество середин отрезков, концы которых принадлежат разным тетраэдрам. Найдите объем фигуры F.

Задачу решили: 30
всего попыток: 31
Задача опубликована: 07.03.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Найти количество n-значных чисел M и N таких, что все цифры M - четные, все цифры N - нечетные, каждая цифра от 0 до 9 встречается в десятичной записи M или N хотя бы один раз, и M делится на N?

Задачу решили: 48
всего попыток: 53
Задача опубликована: 09.03.16 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Лучшее решение: snape

У нескольких крестьян есть 128 овец. Если у кого-то из них оказывается не менее половины всех овец, остальные сговариваются и раскулачивают его: каждый берет себе столько овец, сколько у него уже есть. Если у двоих по 64 овцы, то раскулачивают кого-то одного из них. Произошло 7 раскулачиваний. Среди крестьян выбирается тот, у кого стало больше всех овец. Сколько у него овец?

Задачу решили: 40
всего попыток: 46
Задача опубликована: 11.03.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Длины сторон некоторого треугольника и диаметр вписанной в него окружности являются четырьмя натуральными числами и  последовательными членами арифметической прогрессии. Максимальная длина стороны треугольника не превосходит 26. Найдите количество всех таких треугольников.

Задачу решили: 33
всего попыток: 46
Задача опубликована: 14.03.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Пусть f(x) = x2 + ax + bcos(x). Найдите количество целых значений параметров a, при которых уравнения f(x) = 0 и f(f(x)) = 0 имеют совпадающие непустые множества действительных корней.

Задачу решили: 39
всего попыток: 68
Задача опубликована: 16.03.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: Marutand

Из бесконечной шахматной доски вырезали многоугольник со сторонами, идущими по сторонам клеток. Отрезок периметра многоугольника называется черным, если примыкающая к нему изнутри многоугольника клетка — черная, соответственно белым, если клетка белая. Пусть A — количество черных отрезков на периметре, B — количество белых, и пусть многоугольник состоит из 28 черных и 16 белых клеток. Чему равно A-B?

+ 7
  
Задачу решили: 70
всего попыток: 72
Задача опубликована: 18.03.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Marutand

К натуральному числу N приписали справа три цифры. Получившееся число оказалось равным сумме всех натуральных чисел от 1 до N. Найдите N.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.