img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik решил задачу "Площадь ромба" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 25
всего попыток: 35
Задача опубликована: 06.05.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: логикаimg

Среди 18 деталей, выставленных в ряд, какие-то три подряд стоящие весят по 99 г, а все остальные — по 100 г. За какое минимальное количество взвешиваний на весах со стрелкой и делениями по 1 грамму можно определить все 99-граммовые детали?

Задачу решили: 34
всего попыток: 60
Задача опубликована: 09.05.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Проведено три семейства параллельных прямых, по 10 прямых в каждом. Какое наибольшее число треугольников они могут вырезать из плоскости?

Задачу решили: 23
всего попыток: 34
Задача опубликована: 11.05.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: VFChistov (Виктор Чистяков)

На какое минимальное число частей можно разрезать прямыми линиями любой треугольник, так что из них можно сложить равнобедренный треугольник той же площади.

Задачу решили: 45
всего попыток: 60
Задача опубликована: 13.05.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: kknop (Константин Кноп)

Натуральное число n > 8 назовем хорошим, если каждое из чисел n, n+1, n+2 и n+3 делится на сумму своих цифр. Некоторое хорошее число заканчивается цифрой 8. Какая предпоследняя цифра у него?

Задачу решили: 41
всего попыток: 46
Задача опубликована: 16.05.16 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: marzelik

Какова наибольшая длина арифметической прогрессии из натуральных чисел a1, a2, .., an, с разностью 2, обладающей свойством: a2k+1 - простое при всех k = 1, 2, . . . , n?

Задачу решили: 38
всего попыток: 65
Задача опубликована: 18.05.16 08:00
Прислал: admin img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: VFChistov (Виктор Чистяков)

В какое наибольшее число цветов можно раскрасить все клетки< доски размера 10x10 так, чтобы в каждой строке и в каждом столбце находились клетки не более, чем пяти различных цветов?

Задачу решили: 48
всего попыток: 55
Задача опубликована: 20.05.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: wsz (Жакия Гумаров)

В вершинах кубика написали числа от 1 до 8, а на каждом ребре модуль разности чисел, стоящих в его концах. Какое наименьшее количество различных чисел может быть написано на ребрах?

+ 1
  
Задачу решили: 28
всего попыток: 51
Задача опубликована: 23.05.16 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

На окружности расположена тысяча непересекающихся дуг, и на каждой из них написаны два натуральных числа. Сумма чисел каждой дуги делится на произведение чисел дуги, следующей за ней по часовой стрелке. Каково наибольшее возможное значение наибольшего из написанных чисел?

+ 8
  
Задачу решили: 63
всего попыток: 78
Задача опубликована: 25.05.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: bakh

Числа от 1 до 10 разбили на две группы так, что произведение чисел в первой группе нацело делится на произведение чисел во второй. Какое наименьшее значение может быть у частного от деления первого произведения на второе?

+ 5
  
Задачу решили: 37
всего попыток: 65
Задача опубликована: 27.05.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: VFChistov (Виктор Чистяков)

На вечеринку пришли 100 человек. Затем те, у кого не было знакомых среди пришедших, ушли. Затем те, у кого был ровно 1 знакомый среди оставшихся, тоже ушли. Затем аналогично поступали те, у кого было ровно 2, 3, 4, . . . , 99 знакомых среди оставшихся к моменту их ухода. Какое наибольшее число людей могло остаться в конце?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.