img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: TALMON добавил комментарий к решению задачи "Ломаные маршруты - 2" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 31
всего попыток: 32
Задача опубликована: 16.10.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: avilow (Николай Авилов)

На олимпиаде, которая длилась n дней, было вручено m медалей. В первый день была вручена одна медаль и еще 1/7 от оставшихся m-1 медалей. Во второй день были вручены две медали и еще 1/7 от оставшихся после этого медалей и т. д. Наконец, в n-й день были вручены оставшиеся n медалей. Сколько было всего медалей вручено? 

Задачу решили: 28
всего попыток: 52
Задача опубликована: 19.10.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: игрыimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

В квадрате 3х3 находятся восемь квадратных фишек 1х1 со стрелками и одно свободное место в центре. Все стрелки направлены в центр квадрата (рис. слева).

Стрелки

Передвигая поочередно фишки на свободное место добейтесь расположения фишек, чтобы все стрелки были направлены от центра (рис. справа). В ответе укажите наименьшее число ходов. Ход – это передвижение фишки на соседнее свободное место по вертикали или горизонтали.

Задачу решили: 32
всего попыток: 32
Задача опубликована: 21.10.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Найдите сумму всех целых положительных чисел n таких, что произведение цифр в десятичной записи которых равно n2-10n-22.

Задачу решили: 19
всего попыток: 29
Задача опубликована: 23.10.20 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Отношение произведения расстояний от ортоцентра до сторон остроугольного треугольника с целочисленными сторонами разной длины, образующих арифметическую прогрессию, к произведению  расстояний от него до вершин является кубом рациональной дроби. Найти наименьший возможный периметр такого треугольника.

Задачу решили: 18
всего попыток: 19
Задача опубликована: 26.10.20 08:00
Прислал: MMM img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Vkorsukov

Докажите существование выпуклого 5-угольника, у которого длины сторон 44, 38, 30, 21, 13, согласно последовательному расположению "по кругу".

Задачу решили: 36
всего попыток: 54
Задача опубликована: 28.10.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Числа натурального ряда записаны на клетчатой бумаге в форме спирали: в одной из клеток записано число 1, справа от неё в соседней клетке записано число 2, вниз от неё в соседней клетке записано число 3, и так далее, двигаясь по часовой стрелке образуется спираль из натурального ряда.

Спирали

В ней можно выделить концентрические квадратные рамки, центром которых является клетка с числом 1. Найдите сумму чисел в рамке размером 101х101.

Задачу решили: 44
всего попыток: 48
Задача опубликована: 30.10.20 08:00
Прислал: vochfid img
Источник: Задача Джона Хортона Конвея (John Horton Conw...
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Существует загадочное 10-значное десятичное число abcdefghij такое, что все его цифры разные, и они обладают следующими свойствами:

  1.  a делится на 1,
  2. ab делится на 2,
  3. abc делится на 3,
  4. abcd делится на 4,
  5. abcde делится на 5,
  6. abcdef делится на 6,
  7. abcdefg делится на 7,
  8. abcdefgh делится на 8,
  9. abcdefghi делится на 9,
  10. abcdefghij делится на 10.

Какое это число?

Задачу решили: 7
всего попыток: 53
Задача опубликована: 02.11.20 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Поверхность куба разрезать на минимальное число частей так, чтобы ими оклеить без наложений и просветов два равных куба. Чему равно это число?

Задачу решили: 25
всего попыток: 30
Задача опубликована: 04.11.20 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

В каждой из 18-и строк следующей таблицы задана длина стороны равностороннего треугольника - d, и расстояния от некоторой точки на этой же плоскости до трёх вершин треугольника: a, b и c.

#abcd
1 sqrt(3) sqrt(3) sqrt(3) 3
2 sqrt(7) sqrt(421) sqrt(444) 23
3 sqrt(7) sqrt(421) sqrt(513) 23
4 sqrt(13) sqrt(421) sqrt(469) 24
5 sqrt(7) sqrt(463) sqrt(487) 24
6 sqrt(7) sqrt(463) sqrt(559) 24
7 sqrt(13) sqrt(463) sqrt(513) 25
8 sqrt(7) sqrt(507) sqrt(532) 25
9 sqrt(31) sqrt(381) sqrt(556) 25
10 sqrt(7) sqrt(507) sqrt(607) 25
11 sqrt(13) sqrt(507) sqrt(559) 26
12 sqrt(7) sqrt(553) sqrt(579) 26
13 sqrt(7) sqrt(553) sqrt(657) 26
14 sqrt(43) sqrt(421) sqrt(556) 27
15 sqrt(13) sqrt(553) sqrt(607) 27
16 sqrt(7) sqrt(601) sqrt(628) 27
17 sqrt(43) sqrt(421) sqrt(637) 27
18 sqrt(7) sqrt(601) sqrt(709) 27

По этим данным нужно определить для каждой строки, находится ли точка внутри треугольника.

Ответ должен состоять из 18-и нулей и единиц: Каждой строке соответствует "1", если точка находится внутри треугольника, и "0" в противном случае.

Задачу решили: 36
всего попыток: 45
Задача опубликована: 06.11.20 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

В треугольнике АВС с углами ВАС=30°, АСВ=105° проведена медиана BD. Найти угол ABD в градусах.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.