Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
99
всего попыток:
202
На какое минимальное число частей нужно разрезать два неравных квадрата, чтобы из полученных частей можно было сложить квадрат (а лишних частей при этом не осталось)?
Задачу решили:
57
всего попыток:
246
У Вас есть три одинаковых пластмассовых шарика, и Вы хотите выяснить, после броска с какого этажа 119-этажного небоскрёба на них начинают появляться трещины. (Например, если сбросить с 20-го, то трещины появляются, а на 19-м ещё нет.) Чтобы определить, появились ли трещины, нужно выйти на улицу и осмотреть шарик. Прежде чем выйти на улицу, Вы можете сбросить с разных этажей все имеющиеся в наличии нетреснувшие шарики. Разрешается выйти на улицу не более, чем n раз. При каком минимальном значении n ещё возможно гарантированно определить, после броска с какого именно этажа шарики начинают покрываются трещинами. Учтите, что шарик может покрыться трещинами и при падении с первого этажа, а может остаться целым и при падении с последнего.
(См. похожую задачу "Небоскрёб и стеклянные шарики")
Задачу решили:
79
всего попыток:
206
На доске выписаны в ряд нули и единицы (встречаются и те, и другие). Любые две цифры, между которыми написано 10 или 15 цифр, совпадают. Каково максимально возможное число цифр на доске?
Задачу решили:
81
всего попыток:
119
Автобусный билет называется счастливым, если сумма трёх первых цифр его шестизначного номера равна сумме трёх последних цифр. Доказать, что сумма номеров всех счастливых билетов делится на 13.
Задачу решили:
88
всего попыток:
441
На шахматной доске стоят 64 ладьи (на каждой клетке по ладье). Саша снимает их с доски по очереди, следуя правилу: можно снять любую ладью, которая бьёт нечётное число других оставшихся на доске ладей. Какое максимальное количество ладей удастся снять Саше? (Как обычно, ладьи бьют друг друга и по вертикали, и по горизонтали, но только если между ними нет других ладей.)
Задачу решили:
55
всего попыток:
74
Существуют ли 2009 последовательных натуральных чисел, среди которых ровно 10 простых?
Задачу решили:
161
всего попыток:
191
Длины сторон остроугольного треугольника — последовательные целые числа. На среднюю по длине сторону опущена высота, которая делит её на некоторые отрезки. Найти разность их длин. (Точнее, её абсолютную величину.)
Задачу решили:
127
всего попыток:
150
На столе лежат 30 одинаковых карточек, у каждой из которых одна сторона чёрная, а другая — красная. Все карточки лежат чёрной стороной вверх. Вам завязывают глаза и переворачивают любые 10 карточек. Задание: не снимая повязки, разделить карточки на две кучки так, чтобы в каждой из них было одно и то же число карточек, лежащих красной стороной вверх. (На ощупь стороны карточек абсолютно одинаковы. Рвать или резать карточки нельзя.)
Задачу решили:
363
всего попыток:
707
В ящике лежат 3 пары чёрных носков, 2 пары коричневых и 1 пара синих. Вы вынимаете носки в темноте, не видя их цвета. Какое минимальное число носков Вам придётся достать, чтобы среди них обязательно нашлись две пары, каждая из которых состоит из двух носков одного цвета? (Все носки одного размера, правые и левые не отличаются, вытащенные пары носков могут быть разных цветов.)
Задачу решили:
98
всего попыток:
138
На n карточках написаны все числа от 1 до n (на каждой карточке — одно число). Карточки разложили на две стопки так, что сумма номеров любых двух карточек, лежащих в одной стопке, не является квадратом целого числа. Найти наибольшее значение n.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|