Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
66
всего попыток:
72
Можно ли представить произвольное натуральное число в виде выражения, содержащего лишь три двойки и произвольные математические знаки? Т.е. допускается сколько угодно складывать, вычитать, менять знак, умножать, делить, возводить в степень, извлекать корни, логарифмировать, вычислять синусы и арксинусы, косинусы и арккосинусы, тангенсы и арктангенсы, но все числа в выражении должны быть записаны в десятичной записи с помощью лишь трёх двоек.
Задачу решили:
49
всего попыток:
95
В выпуклом 2010-угольнике отметили некоторые точки (не являющиеся его вершинами) так, что в произвольном треугольнике, образованном любыми тремя вершинами 2010-угольника, нашлась отмеченная точка. Найдите наименьшее число отмеченных точек.
Задачу решили:
333
всего попыток:
539
В саду растут пять яблонь в ряд: А, Б, В, Г, Д. Под одной из них зарыт клад, который можно обнаружить под 2010-ой яблоней, если отсчитывать их поочерёдно то слева направо, то справа налево: А-Б-В-Г-Д-Г-В-Б-А-Б-В-Г-Д-Г-В-Б-А-... (А – первая, Б – вторая и т. д.). Под какой именно яблоней — А, Б, В, Г или Д — зарыт клад?
Задачу решили:
120
всего попыток:
274
К положительному целому числу x, записанному в десятичной системе исчисления без незначащих нулей впереди, приписали это же число и получили десятичную запись нового числа y — дубля x. (Например, если x=12, то y=1212.) Найдите сумму всех различных целых значений дроби y/x2.
Задачу решили:
41
всего попыток:
54
Выпуклый четырёхугольник разбит диагоналями на четыре треугольника, площади которых — целые числа. Может ли площадь четырёхугольника быть простым числом?
Задачу решили:
49
всего попыток:
143
На квадратном торте лежат n не соприкасающихся друг с другом треугольных шоколадок. Для каких n торт всегда (т.е. при любых размерах и расположении шоколадок) можно разрезать на куски в форме выпуклых многоугольников так, чтобы каждый кусок содержал ровно одну шоколадку? (Шоколадки резать нельзя!) Если Ваш ответ "для всех" — введите 0, в противном случае — наибольшее возможное значение n.
Задачу решили:
129
всего попыток:
185
Найдите сумму тангенсов всех углов треугольника при условии, что все три тангенса — целые числа.
Задачу решили:
123
всего попыток:
168
Вычислите x2/(y+z)+y2/(x+z)+z2/(x+y), если x/(y+z)+y/(x+z)+z/(x+y)=1.
Задачу решили:
38
всего попыток:
124
Треугольник, лежащий на координатной плоскости, обладает следующим свойством: при его параллельном переносе на любой ненулевой вектор, обе координаты которого кратны 30, сдвинутый треугольник не перекрывает исходный (т.е. их внутренности не пересекаются). Найти наибольшую площадь исходного треугольника.
Задачу решили:
60
всего попыток:
361
Решите уравнение xy=yx в рациональных числах. В ответе укажите количество его различных решений, удовлетворяющих неравенствам: x>y, x>11/4.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|