Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
68
всего попыток:
107
Алекс и Борис бегут супермарафон длиной 70 км. Скорость Алекса 7 км/ч, а Бориса - 10 км/ч. Однако Борис в любой момент может изменить скорость на 5 км/ч и бежать медленнее до самого конца. С какой вероятностью Алекс победит?
Задачу решили:
53
всего попыток:
71
Найти сумму всех натуральных n таких, что n2(2n-n3)+1 является целой степенью 7.
Задачу решили:
60
всего попыток:
105
Найти количество упорядоченных троек натуральных чисел a < b < c таких, что a1/2 + b1/2 + c1/2 = 20001/2.
Задачу решили:
59
всего попыток:
89
Для действительных чисел x, y, z, u верны следующие уравнения: x2+y2=16, z2+u2=25, xu-yz=20. Найти максимум x·z.
Задачу решили:
42
всего попыток:
58
Найти количество функций удовлетворяющих следующему условию: f(x2+yf(z))=xf(x)+zf(y) для всех действительных x, y и z.
Задачу решили:
66
всего попыток:
143
Найти количество троек целых чисел -10 ≤ a,b,c ≤ 10 удовлетворяющих уравнению a/(b/c)=(a/b)/c.
Задачу решили:
109
всего попыток:
161
Сколько всего четырехзначных чисел имеют в десятичной записи два и более нулей?
Задачу решили:
77
всего попыток:
127
Найти сумму всех целых чисел m и n таких, что log (nm) = log m * log n и log m и log n - целые числа.
Задачу решили:
38
всего попыток:
41
Два игрока по очереди берут одну из девяти плиток (карт, фишек), открыто пронумерованных от 1 до 9. Побеждает тот, кто первым соберет три плитки с общей суммой 15.
Задачу решили:
123
всего попыток:
153
2, 3, 7, 25, 121,... Какое следующее число?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|