img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Площадь ромба" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 30
всего попыток: 69
Задача опубликована: 12.12.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: MMM (MMM MMM)

Найдите a+b+c  если известно, что
a4+b4+c4=32
a5+b5+c5=186
a6+b6+c6=803

Задачу решили: 23
всего попыток: 97
Задача опубликована: 15.12.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

a1+a2+a3+a4+a5=1
a12+a22+a32+a42+a52=1
a13+a23+a33+a43+a53=2
a14+a24+a34+a44+a54=3
a15+a25+a35+a45+a55=5
Найти a16+a26+a36+a46+a56.

Задачу решили: 47
всего попыток: 69
Задача опубликована: 17.12.14 08:00
Прислал: admin img
Вес: 2
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: levvol

Для пяти натуральных чисел n1,>n2>n3>n4>n5 таких, что
[(n1+n2)/3]2+[(n2+n3)/3]2+[(n3+n4)/3]2+[(n4+n5)/3]2=38
[x] - целая часть числа.

Найти сумму всех ni всех возможных решений.

 

Задачу решили: 47
всего попыток: 94
Задача опубликована: 19.12.14 08:00
Прислал: levvol img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: логикаimg

Каждый Флибс является Флобсом. Половина всех Флобсов являются Флибсами, и половина всех Флубсов является Флобсами.

Найдено 30 Флубсов и 20 Флибсов, среди которых ни один Флубс не является Флибсом. Как много среди найденных Флобсов не являются ни Флибсами, ни Флубсами?

Задачу решили: 40
всего попыток: 50
Задача опубликована: 22.12.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg

Пусть действительные числа a ≥ b ≥ c > 0 и x ≥ y ≥ z > 0. Найти минимум (ax)2/((by+cz)(bz+cy)) + (by)2/((cz+ax)(cx+az)) + (cz)2/((ax+by)(ay+bx)).

Задачу решили: 58
всего попыток: 73
Задача опубликована: 24.12.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: MMM (MMM MMM)

Пусть x и y ненулевые действительные числа такие, что x2+y2=x2y2. Найти максимум (5x+12y+7xy)/(xy).

Задачу решили: 46
всего попыток: 84
Задача опубликована: 26.12.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Натуральные числа p и q такие, что x2-x-1 является делителем px17-qx16+1. Найдите p.

Задачу решили: 62
всего попыток: 77
Задача опубликована: 29.12.14 08:00
Прислал: levvol img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Натуральное число 55n3 имеет 55 делителей, включая 1 и само число. Сколько делителей имеет натуральное число вида 7n7?

Задачу решили: 51
всего попыток: 77
Задача опубликована: 31.12.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: andervish (Андрей Вишневый)

Известно, что уравнение x3-ax2+bx-8=0 имеет все корни действительные, a и b - положительные числа. Найдите миимально возможное значение b.

Задачу решили: 50
всего попыток: 73
Задача опубликована: 02.01.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: levvol

Последовательность чисел ai такая, что:
a1=2;
an+1=an+pn, где pn - наибольший простой делитель числа an
(первые члены последовательности 2, 4, 6, 9, 12, 15, 20, 25).

Найдите n такое, что an - максимальное 4-значное число этой последовательности.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.