img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Площадь ромба" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 74
всего попыток: 166
Задача опубликована: 28.01.15 08:00
Прислал: levvol img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

Четыре окружности, имеющие одинаковый диаметр, размещены внутри треугольника, площадь которого 1.

lv.png

Найдите диаметр окружностей d. Ответ приведите в виде целого числа [1000*d]. 

Задачу решили: 60
всего попыток: 78
Задача опубликована: 30.01.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Пусть a1=1, a2=2, a3=3 и an+3=(an+2+an+1+an)/3 для n>0. Найти предел последовательности.

Задачу решили: 62
всего попыток: 81
Задача опубликована: 02.02.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: levvol

Многочлен от одной переменной p(x) с целыми положительными коэффициентами такой, что p(1)=12, а p(12)=2080. Найти p(10).

Задачу решили: 30
всего попыток: 215
Задача опубликована: 04.02.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: kvanted

Найдите количество целых чисел 1 ≤ n ≤ 10000, которые могут быть представлены в виде n=[2x]×[3x], где x - действительное число, [x] - целая часть числа x. 

Задачу решили: 81
всего попыток: 126
Задача опубликована: 06.02.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

m и n - целые числа такие, что m2=n2+8n-3. Найдите сумму всех таких возможных n.

Задачу решили: 40
всего попыток: 242
Задача опубликована: 09.02.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

В школе учится 100 учеников и для каждого имеется свой шкафчик. Все школьники имеют свои номера, соответствующие номерам шкафчиков. Изначально все шкафчики закрыты. Школьники приходят в порядке нумерации.

Когда приходит школьник 1, то он открывает все шкафчики.

Школьник 2 закрывает каждый 2-й шкафчик.

Школьник 3 изменяет состояние каждого 3-го шкафчика: если открыт, то закрывает, если закрыт, то открывает.

Школьник 4 изменяет состояние каждого 4-го шкафчика. И т.д. до 100-го школьника. 

Если какой-то школьник не приходит, то никто не выполняет за него указанную процедуру.

В один из дней все шкафчики были закрыты, кроме 1-го. Сколько в этот день отсутствовало школьников?

Задачу решили: 26
всего попыток: 32
Задача опубликована: 11.02.15 08:00
Прислал: pvpsaba img
Источник: Международная Жаутыковская олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Определите максимальное целое число n такое, что для каждого натурального k, k≤n/2, имеются два положительных делителя n с разницей k.

Задачу решили: 35
всего попыток: 56
Задача опубликована: 13.02.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Рассмотрим все кубические многочлены p(x)=x3+ax2+bx+c с действительными коэффициентами. Найдите минимальное возможное значение max |p(x)|  среди всех таких многочленов для всех -1 ≤ x ≤ 1.

Задачу решили: 62
всего попыток: 140
Задача опубликована: 16.02.15 08:00
Прислал: admin img
Источник: http://naked-science.ru/article/psy/yaponskii...
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: логикаimg
Лучшее решение: levvol

На одном берегу реки собралась компания: отец с двумя сыновьями, мать с двумя дочерьми и шериф с заключенным. Все они хотя переплать на другой берег. При этом:

1. Детишки не могут одни находиться на плоту.

2. Шериф не может оставлять заключенного с остальными.

3. Мужчина не может оставлять своих двух сыновей одних с женщиной, а женщина своих дочерей с мужчиной.

4. Плот не может плыть сам по себе, а на плоту могут находиться не более 2 человек.

Какое минимальное количество раз плот причалит к противоположному берегу, чтобы перевезти всю компанию.

 
Задачу решили: 30
всего попыток: 60
Задача опубликована: 18.02.15 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Пусть f(x)=1/(x-1)+1/(x-2)+...+1/(x-100) и x1, x2, ..., xn - нули функции в каком-то порядке.

Найдите максимум выражения ([x1]-[x2]+[x3]-[x4]+...±[xn])/(n+1), где [x] - целая часть x.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.