Лента событий:
solomon предложил задачу "Медиана и биссектриса в треугольнике" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
98
всего попыток:
110
На гранях кубика записано по одной цифре от 1 до 6. Если на этот кубик смотреть с одной стороны, то видны 1, 2 и 3, с другой стороны видны 4, 1 и 5, а с третьей стороны видны 2, 6 и 4. Какие цифры находятся с противоположных сторон цифр 1, 2? Ответ запишите в виде числа AB, где A - цифра с противополжной стороны 1, а B - с противоположжной сторны 2.
Задачу решили:
48
всего попыток:
58
Остаток от деления x2015 на x2-x-1 равен ax+b. Чему равно a2-ab-b2.
Задачу решили:
37
всего попыток:
85
Рассмотрим все функция f такие, что Найти наименьшее положительное число, являющееся периодом для всех f,
Задачу решили:
38
всего попыток:
62
При представлении числа N в виде N=±1±2±3±...±100 можно в любом месте выбирать знак "плюс" или "минус". Сколько чисел можно представить в таком виде?
Задачу решили:
28
всего попыток:
97
Найти наименьший период для функций, удовлетворяющих условию:
Задачу решили:
118
всего попыток:
154
0, 1, 8, 11, 69, 88, ... Какое следующее число?
Задачу решили:
47
всего попыток:
108
Пусть x - наименьшее положительное число такое, что ({x} - дробная часть числа x.)
Задачу решили:
35
всего попыток:
87
Пусть целые положительные числа a ≥ b такие, что (a+1)/b + (b+1)/a - тоже целое. Найдите сумму всех таких a меньших 1000.
Задачу решили:
59
всего попыток:
108
Определите цифру, стоящую в младшем разряде числа [1093/(1031+3)], где [n] - целая часть числа n.
Задачу решили:
49
всего попыток:
94
Определите количество различных значений в конечной последовательности чисел [12/2015], [22/2015], [32/2015], ..., [20152/2015]
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|