Лента событий:
TALMON предложил задачу "Восьмёрки целых чисел" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
10
всего попыток:
24
Десятиклеточный самолетик, изображенный на рисунке слева, помещается в прямоугольник 5х4, два таких самолетика помещаются в прямоугольник 8х4, три таких самолетика помещаются в прямоугольник 11х4 (на рисунке в центре и справа). В какой прямоугольник наименьшего периметра можно поместить 7 таких самолетиков? В ответе укажите периметр этого прямоугольника.
Задачу решили:
6
всего попыток:
20
В кубе ABCDA1B1C1D1 с ребром 1 проведен отрезок, соединяющий вершину A куба с центром грани A1B1C1D1. Этот отрезок начинает непрерывно «скользить» своими концами по двум скрещивающимся диагоналям AC и B1D1 противоположных граней куба, не меняя своей длины. Двигаясь таким образом, отрезок задает линейчатую поверхность, изображенную на рисунке. Найдите площадь поверхности. Полученное значение площади поверхности округлите до десятых и ответ запишите в виде неправильной дроби.
Задачу решили:
0
всего попыток:
0
Найдите количество упорядоченных восьмёрок целых чисел A, B, C, D, E, F, G, H, каждое из которых в пределах от -10 до +10 включительно, для которых существуют такие рациональные числа α, β, γ, δ, что выполняется равенство: (A + B√2 + C√3 + D√6) / (E + F√2 + G√3 + H√6) = α + β√2 + γ√3 +δ√6
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|