Лента событий:
tubaki решил задачу "Простые делители типа 4k+3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
22
всего попыток:
52
На полке стоит 9-томник, книги которого пронумерованы в таком порядке: 987654321. За одно перемещение можно взять любые два рядом стоящих тома и поставить их на любое другое место полки, в том числе между двумя другими томами. За какое наименьшее число таких перемещений можно получить натуральное расположение томов 123456789.
Задачу решили:
19
всего попыток:
34
Найти отношение площадей двух параллелограммов (меньшей к большей) с диагоналями 10 и 17, высотой 8.
Задачу решили:
26
всего попыток:
44
В треугольнике АВС угол А=45°, угол В=15°. На продолжении стороны АС в направлении С отмечена точка М, причем |СМ|=2|АС|. Найти угол АМВ в градусах.
Задачу решили:
19
всего попыток:
30
Для каждого натурального N>1 определены: Найдите максимальное N, меньшее 12345, для которого g(N) нецело.
Задачу решили:
22
всего попыток:
27
Найти сумму всех целых возможных x и y таких, что 2x+3y=z2 (z - тоже целое).
Задачу решили:
19
всего попыток:
24
В числовом ребусе
Задачу решили:
12
всего попыток:
14
В целочисленном параллелограмме пересечения биссектрис внутренних углов определяют вершины четырёхугольника, ни одна точка которого не находится вне параллелограмма. Сколько существует таких параллелограммов, если известно, что одна из его сторон равна 135, а углы кратны 9 градусам?
Задачу решили:
17
всего попыток:
24
Внутри прямоугольника построены два пересекающихся треугольника, образующие при пересечении четырехугольник с площадью S. Найдите наименьшее целое S, если a=1, b=2215, c=144, h – целое.
Задачу решили:
20
всего попыток:
25
Через неподвижные блоки на нити уравновешены три гири массами 3, 5, 7 кг. Чему равен угол α в градусах? Трением в блоках, упругостью нити и её массой пренебречь.
Задачу решили:
26
всего попыток:
35
В координатной плоскости построены парабола y = x2 - 5x + 10 и окружность, пересекающая параболу в четырех точках A, B, C и D. Известны абсциссы трех точек: xA = 23, xB = –24, xC = – 25. Найдите абсциссу четвертой точки D.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|